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A new method for generating adaptive moving grids is formulated based on phys-
ical quantities. Level set functions are used to construct the adaptive grids, which are
solutions of the standard level set evolution equation with the Cartesian coordinates
as initial values. The intersection points of the level sets of the evolving functions
form a new grid at each time. The velocity vector in the evolution equation is chosen
according to a monitor function and is equal to the node velocity. A uniform grid is
then deformed to a moving grid with desired cell volume distribution at each time.
The method achieves precise control over the Jacobian determinant of the grid map-
ping as the traditional deformation method does. The new method is consistent with
the level set approach to dynamic moving interface problenas2o00 Academic Press
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1. INTRODUCTION

Key problems in numerical simulation of time-dependent partial differential equatic
are grid generation and grid adaptation. General grid generation methods are discuss
Thompsoret al. [2], Zegeling [3], Knupp and Steinberg [4], Carey [5], and Liseikin [6].
The problem this paper deals with is how to generate adaptive moving grids.

The tasks of simulating transient problems on three-dimensional domains become ¢
mously difficult when tens of millions of nodes are needed. This is especially so in trans
problems with moving fronts, shock waves, etc. For instance, to correctly simulate
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104 LIAO ET AL.

dendritic growth of a crystal modeled by a Stefan problem, one must use fine grids r
the interface between the solid phase and the liquid phase. Figure 8 of [26] shows the
portance of grid sizes. Using a state-of-the-art level set method, the 100 200x 200,
and 300x 300 fixed uniform grids on the unit square give rise to unsatisfactory results
the interface. It takes the 460400 fixed grid to produce a sharp result. A 3D simulatior
would need 64 million nodes. This would be too costly.

We hope to improve the accuracy and efficiency of the simulation by using adap!
grids. The idea is to generate the grids according to the salient features of the solutiol
that the nodes will be concentrated in regions where the solution changes rapidly in o
to improve accuracy, and fewer grid points are used in regions where small changes i
solution occur.

We now describe a general idea of moving grids. Suppose that we want to simula
scalar or vector fieldi(x, t) satisfying

Ug(X, t) = L(u); 1)

hereL is a differential operator defined on a physical dom@ia- D, in R", n=1, 2, 3.

A common idea is to construct a transformatgmrD; x [0, T] — D, which moves a fixed
number of grid points of to adapt to the numerical solution as it is being computed on tt
computational domaiB;. To be qualified as a transformatigrnmnust be one to one and onto.
Variational methods (cf. [1, 7]) and elliptic PDE methods (cf. [2]) define this transformati
asthe solution of a system of PDEs which is created to control various aspects of the grid
as orthogonality (“skewness”), smoothness, and cell size. The resulting system of PDE
grid generation is often nonlinear and its solution requires intensive computation. Signific
contributions were made to dynamically adapt the grid by controlling the cell size throt
the Jacobian determinant of the transformation in [1, 2, 7, 8]. The moving finite elem
method was developed in [9] and is useful for certain unsteady problems. Recently, mo
mesh methods based on moving mesh partial differential equations [12] were develc
that have remarkable capability to track rapid spatial and temporal transitions for sc
model problems. Hybrid techniques that use both grid motion and local refinement sho
their effectiveness for 2D problems [10].

The deformation method originated from differential geometry (see [13, 14]). It det
mines the node velocity by a monitor function and thus the time-dependent differen
equations can be transformed by nodal mapping into the computational domain. The tr
formed equation can then be simulated on a fixed orthogonal grid. The static versiol
the deformation method was used with a finite volume solver in flow calculation proble
[19]. A one-dimensional version of the method was used with a discontinuous Galet
finite element method in numerical simulation of a convection—diffusion problem [17]. F
finite difference algorithms that are based on orthogonal grids, we transform Eq. (1)
x=¢ (&, 1) and solve the transformed equation on a fixed orthogonal grid of-tioenain
(the commutational domain).

In this paper, we formulate a new deformation method which is based on the level
approach and the transport formula from fluid dynamics. The level set deformation met
moves the nodes with a proper velocity so that the nodal mapping has the desired Jac
determinant. Thus it precisely controls the cell size distribution according to a posit
monitor function. As in the deformation method, the velocity vector field is construct
by solving a Poisson equation determined by the monitor function. The main differel
between the two methods is that the deformation method uses a system of ODEs to r
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the nodes while the level set deformation method uses a system of level set evolution F
to generate the moving grid. The ODEs are, of course, the characteristic equations fo
PDEs.

Earlier work using the level set method for grid generation was done by Sethian in [2
Our technique is quite different. We control the Jacobian of the grid mapping, while in [
the main idea is to create a body-fitted coordinate using the level set function. Then the
coordinates are obtained by solving ODEs. We note that our method can also be exte
to obtain body-fitted coordinates while still controlling the Jacobian.

Recall thatthe Jacobian determinant of amappigt) fromD;to D,inR", n=1, 2, 3,
is J(¢) =detVe = |d A|/|d Al, whered A is the image of a volume (area, in 2D) elemen
d A. Our goal is to construes such thatl (¢) = f (¢, t), since this will give precise control
over the cell size in any dimensions.

Suppose that the solution to (1) has been computed at time=stip;, and a preliminary
computation has been done at time letvelt,. Assume that we are provided with some
positive error estimatat(x, t) at the time stefy. Define a monitor function,

f(x,t) =Cy/8(x, 1), 2

whereCy = C4(t) is a positive scaling parameter such that at each time step we have

1
—— —1|dA=0. 3
/D2<f(X,tk) ) )

We then seek a transformatign D; — D, = D, such that

detVo(x,t) = f(p(X, 1), 1) t1 <t <t

¢ (X, tk—1) = ¢x-1(X) xon Dy, @)
wherex is a grid node of an initial grid anglk_,(X) represents the coordinates of the nod
att =ty_1 ((3) is necessary for (4) to be true). We specify that) € 9D, for all x e 9 D;.
Note that (4) ensures the size of the transformed cells will be proportionl te., the
grid will be appropriately condensed in regions of high error and stretched in region:s
small error. It is well known that if the Jacobian determinant of such a transformai®n
positive in D4, theng is one-to-one in all oD, ensuring that the grid will not fold onto
itself. Various equidistribution principles can be used to construct the monitor function
posteriori error estimates (if available), residuals, truncation errors, etc. are redistrib
evenly over the whole domain. In most cases, we want to put refined grids in the reg
whereu changes rapidly. For instance, if the flow patterns exhibit shock waves, we can t
(for Euler flows)

f=Ci/(1+CalVpl?), )
wherep is the pressure; is a constant for adaptation itensity, a@gdis a normalization

parameter. In addition to the gradient pfterms involving the value op and the second
derivatives ofp (or the curvature of its level sets) can also be included. For instance,

f =Cy/(1+alpl®+ BIVPP + yIVZpl?). (6)
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For interface resolution, we can, for instance, constriudty using the signed distance
functiond from the interface as follows: Left be piecewise linear such that

1 if |d| > 0.1

f = 7
{0.2 ifd=0. "
Normalize f so that [, (1/f —1) = 0, which is required if (4) is to be satisfied. The
constants 0.1 and 0.2 in (7) can be changed according to the desired intensity of adapt
at the interface. The signed distance function can easily be computed as was done in

2. ALEVEL SET DEFORMATION METHOD

In this section, a new moving grid method is formulated. The usual evolution equat
for level set functions (as in [27]) with the Cartesian coordinates as initial values is solv
The velocity vector in the evolution equation is chosen according to a monitor functic
The intersection points of the level sets of the evolving solutions will form a new grid
each time. Numerical examples will be provided in which a uniform grid is deformed
moving grids with prescribed cell size distribution at each time.

We first set up the principle of redistribution in the one-dimensional case before descrit
the method in multiple dimensions. Suppose that a positive monitor funttiart) is given.
We want to construct a grid dff + 1 nodes,

Xo(1) =0 <X () < Xe(t) <+ <X () <Xp1() <--- <xXn() =1,

on [0, 1] at each timeé with the lengthx; ;1 — x; = f(X{, t)/N wherex/ is the midpoint of
the subintervaly;, x; .1]. We seek a level set functiafhfrom [0, 1] to [0, 1], which sends;
toki = ¢ (X)), where point& =i/N,i =0,1,2,..., N, formauniform grid on the interval
[0, 1] of they-axis. The condition1 — X = f(x/, t)/N is equivalent to

(I/N)/ (i1 — %) = 1/F (K, 1),

whose left hand side tends to the Jacobian determingtix asN — oo. At the limit, we
get the condition fop that

dp/ox =1/f(x,t) = g(x,t) (denotingg = 1/f). (8)

In 1D, this equation can be solved by direct integration,
X
600 = [ @/fs0)ds
0

where f is normalized to satisfy the conditiaf(1) = fol(l/f (X,1))dx=1 for eacht.
The preimages of the evenly placed poikits=i/N under the transformation— ¢ (x, t)
are the level sets af and they form the new nodes. This is illustrated by Fig. 1 (see al
Figs. 2a—-2i of Example 1). As one can see, evenly placed horizontal lines intersect the g
of a monotonic functior. The projections of the intersection points onto #iaxis are
the nodex;,i =1, 2,3, ..., of the new grid. By properly evolving the functign we can
control the spacing of the moving grid on<Ox <1 precisely.
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FIG.1. Levelcurve.

This idea extends to multiple dimensions as follows. The goal is to generate a n
mapping® from D; — D, such thatJ(®)=1/f for a positive monitor functionf. To
begin, let us recall the basic concept of modeling a moving front by level sets. Suppose
there is amoving frontin a fluid flow with a velocity field= (x;, V;, z), wherex = (X, vy, 2)
is the position of a (fluid) particle at time We introduce a smooth functiap(x, y, z, t)
with the property that the front is given by the zero level seppfe.,¢(x,y, z,t) =0.
Differentiate the identity with respect towe getd, + ¢y X + ¢y Yy: + ¢,z = 0, which can
be written as

H(X, Y, Z,t) + (Vo,v) =0. 9

This is the evolution equation for the level set functiarin the calculations of fluid flows,
v is the velocity of the fluid particle occupying the poixt(t), y(t), z(t)) at timet. Other
important geometric parameters such as the curvature of the front and the normal veci
the front can easily be determined frgmSee [27] for an overview. In the level set moving
grid methody is the node velocity.

Our purpose is to generate an adaptive grid according to a positive monitor furfictior
In two dimensions, we construct two functiopsndyr by (9) with a suitable vector field
(v is determined in (18) below). Then the intersections of their level set curves will be
new nodes. Thus, let(x, y, t) andy (X, y, t) be solutions to the evolution PDE

{¢t(x’ y’ t) + <V¢, V> = 0
wt(xv Y, t) + <v1/f, V) =0.

The initial conditions are (X, y, 0) =X, ¥ (X, y, 0) =y, respectively. The boundary con-
ditions are

(10)

¢0,y,) =0, ¢(Ly,)=1 ¢X0,1)=¢(X 10 =x;
v(x,0)=0, v, 1Lt)=1 vOyH=vdyt)=y.

Let ® = (¢, ¥). The vector fields is chosen so that the Jacobian determiriaig equal to
the reciprocal off , namely

J(@) =03, ¥)/a(x, y) =1/f (X, y,1). (11)

Note that this condition is the natural extension of the 1D condition (8).



108 LIAO ET AL.

In three dimensions, we solve for three functignse,, ¢s from the equations
(@)t +(Vei,v) =0, i=123, (12)

with the same type of initial and boundary conditions as in 2D.
Let ® = (¢1, ¢2, ¢3). A suitable vector fields can be determined so that the Jacobiat
determinant of the mapping is equal to the reciprocal of a monitor functidn namely

J(¢) = D(¢lv ¢27 ¢3)/D(X9 Y, Z) = 1/f (X7 Y. Z, t) (13)

The intersections of their level sets form the nodes of the moving grid.

The key to the success of the proposed method is to determine the velocity vecter fie
sothatd =1/f =gateveryt. Thus, the grid cell size can be precisely controlled, resultin
in a moving grid that is adaptive according to the monitor functforA proper velocity
vectorv can be determined by the condition

gt +div(gv) = 0. (14)

This choice ofv is based on the transport formula in fluid dynamics, which can be found
any standard textbook on fluid dynamics [28, 29].

Let Q; be the image of an initial regioRy under the flow of the velocity field =
X, W, ), wherex = (X, Y, 2) is the position of a (fluid) particle at tinte

THEOREM (Transport Formula). For any function fix, t), we have

d oh .
at o hdV = /Qt (at + dlv(hv)> dv. (15)

Let J=D(¢1, ¢2, ¢3)/D(X, Y, 2) be the Jacobian determinant of the transformatio
(X, Y, 2) = (¢1, 2, ¢3). Takingh =g(x, t) = 1/f in (15), we get, by a change of variables,
that

d d . ag .
— dv=— ldv = = 4d dv=0 16
dt/mg at QDQJ /Qt<at + IV(QV)> ) (16)

where (14) is used to get the last equation. In the change of variables,y, z)/
D(¢1, ¢2, ¢3) = I tisused. (16) implies that)—* = constant sinc is arbitrary. Choose
(93 H]t=o=1. Then we gegJ~* =1 for anyt > 0 as desired.
To solve forv from (14), we first observe that, in one dimension, condition (14) becom
92w

o a(gv)/oX = —g;, Wherew = gv,

and we can solve far by direct integration and get

X 2w
U(X,t)=—</0 gt)/@l:X g.

This suggests a simple method for determining the velocity vector ¥iédmultiple
dimensions. Letf (x, Y, z,t) > 0 be the desired grid cell size distribution, which is con:
structed according to the physical variables being simulated and is normalized as in (3)
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g=1/f. We first solve for a real-valued function (potentiai)}from the Poisson equation
on thexyzdomain,

Aw = —0, (17)
with the Neumann boundary condition. Then we set
v=Vuw/g. (18)

It follows that divgv) =div(Vw) = Aw = — g as desired. The method is based on solvin
a scalar Poisson equation, and thus it works for general three-dimensional domains.

2.1. Numerical Examples

EXAMPLE 1 (Fig. 2). Moving grids on [0, 1]. Lef =1/g whereg =1+ 10t(x? — x +
1/6). By direct integration, we can verify that

1
/O gdx =[x+ 10t(x*/3 — x?/2 + x/B)[’=5 = 1, for everyt.

Thus the normalization condition (3) is analytically satisfied. We want to generatt
moving grid which is a uniform grid on [0, 1] at=0. In 1D the velocity field is a real-
valued function. Solving fov from condition (14),

div(gv) = (gu)x = —G.
we get, by direct integration,
v =10(—x3/34+ x%2 — x/6)/g.
Next, solve forg: [0, 1] x [0, T] — [0, 1] from the evolution equation

(X, 1) + (px,v) =0

with the initial and boundary conditiorgs(x, 0) =X, ¢(0,1) =0, ¢(1,t) =1.

Let 1/N be the spacing of a uniform grid on [0, 1]. The preimages of the nodes of
uniform grid on [0, 1] form the moving grid at selected timén Fig. 2, f and¢ are plotted
along with the nodes of the moving grid witth= 60. Note that the grid spacing neas 0
andx = 1 is getting smaller and it is getting larger neag 0.5. In fact, this is the intended
distribution sinced¢ /dx=g=1/f, which meansAx, = f/N.

ExampPLE 2 (Fig. 3). A 60x 60 uniform grid is deformed into a grid concentratec
around a pair of circles and the grid moves appropriately as the circles merge into e
other. Here the functiod is the product of level set functions for two moving circles,

d=((x—ap?+(y—b)?—r?)((x —a)?+ (y — bp)* — o),

where @4, by) is the (moving) center of the first circle arap(b,) is the (moving) center of
the second circle. The zero setdb€onsists of the two circles amdandp are their varying
radii. Initially (a;, b;) = (0.4, 0.5), (az, by) = (0.6, 0.5), andr = p =0.18. The level set
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FIG. 2. Monitor functions, level set functions, and grid plots for Example 1.
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deformation method deforms the initial uniform grid fréms 0 tot = 0.5 using the monitor
function

1-2t+2t(02—8d) if ~01<d<0
f={1-2t+2t(0.2+8d) if0<d<0.1 (19)
1 if |d| > 0.1.

Then the adaptive gritl= 0.5 continues to deform according to the monitor function

02-8d if —01<d<0
f={02+8] if0<d=<01 (20)
1 if |d| > 0.1

The time discretization of the evolution equations used a second-order TVD Runge—K
scheme and the spatial derivatives were approximated by a second-order ENO schen
in [31]). The second-order ENO scheme is also a TVD scheme. However, higher order E
schemes do not have the property. The main reason we used an ENO scheme is th
functionsgp andys must remain monotone. We note that the extra cost incurred by using t
method rather than Lax—Wendroff, for example, is tiny compared to the overall cost of
algorithm. The elliptic solver used to compute the velocity field is by far the most expens
part of the algorithm. The Poisson equation was approximated using central differen
for both derivatives. The resulting system of linear algebraic equations was then solved



LEVEL-SET-BASED DEFORMATION METHODS 115

a T
"
i
_j— HEH o ]
T [T N H !
s u T
jnmass: nas
HFH T B ! m
T HHH s
it T T
} H t Tt T
mun ui
m H e T T H
! mmaagas L H T . ni
| T R e e
(Y HH T T Hr B 1 b
T e I T N R Tt
RSN LR R RS T T T ] T
(BRI R ANRAN! 1 i 1 O T 1
i - a BES
a 1 H HH 1
A s t T
i 1+ T ll” T
T
R E: ; 1 +
: A ] '
FE H "
s H H Sacas £=! T
N aENERasY i 4\1
T
b I T
!
TH H
e
IRENNNN| T
H t T T InERE
' T
1 m _‘N_ 1 T T T El’ juA| T
ay REwEEy T HTT T H + H
THOTT B el R mam T
HA T THHT T T T I
T T i R T i T AT
T s iy ma T _
] A T iy T I
1 [ HH H 8 e, T
Iy 1 N} Il 181
f I T IWEn T }
T I n
T T ! 1
] 7_.1_1
A
HH T 1
" 1
I

FIG. 3. Grid plots for Example 2.

the successive overelaxation (SOR) method, where the value of the relaxation constan
chosen as 1.3. The Neumann boundary conditions were implemented using ghost p
The new position of the nodes were obtained by the following scheme (see Fig. 4):
d: (X, y) — (¢, ¥). Then by (11), we know that {s dropped for simplicity of presentation)

J(@7Y = f(x(ki, k), y(ki, k),

(p"‘_"

¢
w=b=k J

xplane py—plane

FIG. 4. Grid lines in thexy-plane.
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FIG. 5—Continued

where(x(ki, kj), y(ki, kj)) are the new node coordinates. Setting ki andyr =Kk;, then
(x(ki, kj), y(ki, k) = > 1k, kj). Thus the new nodal positions can be obtained by inte
polation.

ExamvpPLE 3 (Fig. 5). A 100x 100 initial uniform grid deforms fromi=0tot=0.5
to a grid clustered around the interface of the solidification phenomenon modeled by
Stefan equation. The monitor functidnis defined by

1-2t+2t(02—4d) if —02<d <0
f={1-2t+2t(02+4d) if0<d<0.2 (21)
1 if |d| > 0.2,

whered is proportional to the level set functi@n which is calculated by a level set method
(see[26]), thatig] =ce¢ (X, y, t), wherecis the adaptation constant (in the exampie10).
The vectorfields, the solutions to the level set evolution equation, and the new node positi
were obtained as in example 2.
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Figure 5 shows the moving grid follows the interface closely.

EXAMPLE 4 (Fig. 6). A 50x 50 x 50 uniform grid on the unit cube iR® is deformed
into a grid concentrated around a pair of spheres and the grid moves appropriately a
spheres merge into each other. The monitor functiois also defined by (21) with the
functiond

d=(x—ap?+(y—b)?—r?)((x —a)? + (y — bp)* — p?)

where @y, by, ¢p) is the (moving) center of the first sphere &g, by, ¢,) is the (moving)
center of the second sphere. The zero se&t cbnsists of the two spheres an@ndp are
their varying radii. Initially (a;, by, ¢1) = (0.4, 0.5, 0.5), (az, by, ¢2) = (0.6, 0.5, 0.5), and
r=,p=0.18.
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2.2. Application to Time-Dependent PDEs

We describe the procedures of using our method for solving time-dependent PDE
which works for any dimensions. For simplicity, let us consider the dimensier2. A
monitor function f is determined by the solution being calculated. Then we determi
v = f Vw, wherew satisfies

A 1
o<1,

with the Neumann boundary condition. Next, solvegoandys from (10),

{d)t(X’ ya t) + (Vd)v V) = 0 (22)
wt(xa y! t) + <VW7 V) = 0,

with the same boundary and initial conditions.
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FIG. 6—Continued

Let ® = (¢, ¥). Put a uniform grid on the unit square, ] x [0, 1] of the ¢y -plane.
The nodep =a, ¥ =b in the ¢py/-plane has a preimage(a, b, t), y(a, b, t)) under® at
each timet, which is the node of the moving grid in they-plane corresponding t@, b)

on thegy-plane (see Fig. 4). Consider

{¢(x, y.t)=a
v(X,y,t) =bh.

Differentiating (23) with respect t we get

{¢t(X, ya t) +¢)xx +¢yy =0
Wt(X» Y, t) + W)(X + 1//yy =0

(23)

(24)
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Comparing (24) with (22), we get

Namely, the node velocity is equal ¥o
For simplicity of presentation, let us consider the case whetgy, t) is a scalar function.

LetU (¢, ¥, t) =u(x(¢, ¥, 1), y(¢, ¥, 1), 1). Then

Up = UxX + UyY + Ug,

whereu; = L(u) by (1), (, ¥) =v. The derivatives that are in(u), such asly, Uy, Uxx, Uxy,
anduyy, are transformed also. For instance, from

Uy = UxXp + UyYs
Uy = UxXy + UyYy,

we can solve fouy anduy uniquely, since

1

f

Xo Yo
Xy Yy

> 0.

The higher derivatives can be obtained similarly. The transformed equatithdary, t)
takes the form of

Uy = L), (25)

whereL is a differential operator igp andy.
Finally, (25) will be solved on a fixed uniform grid in thig) -plane.

3. CONCLUSION

A new moving grid method is formulated that is based on the standard evolution equa
for level set functions. A suitable velocity vector field can be constructed from a posit

monitor function by solving a scalar Poisson equation. The resulting moving grid has
desired cell size distribution specified by the monitor function at each time. Numerical

amplesin 1D, 2D, and 3D are given to demonstrate the method. Further numerical resul
solving time-dependent PDEs based on Section 2.2 will be published in subsequent pz
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